The Fundamentals of Study Design in Brain Injury Rehabilitation: How Quality Research can Affect Patient Care

Williamsburg TBI Conference
May 3, 2018
Introduction

• Adam Sima, PhD
 – adam.sima@vcuhealth.org

• Biostatistician at VCU
 – Primary Duty: Assist researchers develop research programs
 • Study planning
 • Data analysis

• Presentation: http://www.biostatistics.vcu.edu/bclresources/
What is (clinical) research?

- Any systematic investigation into the health factors of a group of patients
 - Includes needs assessment, quality improvement, treatment evaluation
 - Systematic
 - Allows for results to be judged on their merits
 - Patients
 - Does not include laboratory studies, case studies, treatment plans, animal models, etc...
Why perform research?

• Advances knowledge that leads to beneficial patient outcomes
 – Individual treatment
 – Programmatic or organizational behavior
• Favors treatments based on evidence-proven results over opinion or tradition
Process of Clinical Research

- Define Research Question
- Assess Resources
- Study Design
- Obtain Data
- Analyze Data
- Disseminate Results
Research Question

• Focus of research study
• Defines:
 – Area of concern
 – Population of interest
• Good Research Questions are:
 – Of interest to the field and the investigator
 – Feasible with available resources
 – Clear and concise
 – Ethical
Assess Resources

<table>
<thead>
<tr>
<th>Required</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time!!!!!!!!!!!!!</td>
<td>External Funding</td>
</tr>
<tr>
<td>Content area expertise</td>
<td>Administrative Support</td>
</tr>
<tr>
<td>Informatics / Data management</td>
<td>Design and Analysis Support (Biostats)</td>
</tr>
<tr>
<td>Research experience or mentorship</td>
<td></td>
</tr>
<tr>
<td>Access to patients</td>
<td></td>
</tr>
<tr>
<td>Ethical Approval</td>
<td></td>
</tr>
</tbody>
</table>
Study Design

• Prospective
 – Plan to use patients in the future
 – Pro: Allows control over exactly what is needed for the study; Relatively high level of evidence
 – Con: Can be expensive, time-consuming, and impractical

• Retrospective
 – Use information already collected
 • e.g. administrative data, medical records
 – Pro: Inexpensive; Lots of data already available
 – Con: Potential biases; missing information
Study Design

• Retrospective Study Designs
 – ‘Prevalence’; Cohort; Case-control;

• ‘Prevalence’ studies
 – Summary of a particular group
 • What is the prevalence of depression in females after TBI?
 • What is the average age of males with penetrating TBI?
A sample of TBI patients was assessed to determine the prevalence of anxiety 1 year following injury.

- Clinically Diagnosed Anxiety
 - N=90

- Not at Risk
 - N=10
A sample of TBI patients was assessed to determine the prevalence of anxiety 1 year following injury.

- Clinically Diagnosed Anxiety
 - N=90
- Not at Risk
 - N=10

- Not at Risk
 - N=890
- No anxiety measured (asymptomatic)
Study Design—‘Prevalence’

• Big Caution for ‘Prevalence’ Studies
 – Results are only as good as data
 – ‘Good data’—Generalizable to a population and reflective or real-world occurrences
Study Design - Cohort

- Retrospective Cohort Study
 - Identify exposure groups and assess future outcomes
 - For clinic patients in the past 5 years, do patients who meditate have higher rates of depression 1-year postinjury than those that do not?
 - Mediation: 25%
 - No Meditation: 33%
Study Design - Cohort

- Big Caution for Retrospective Cohort Studies
 - Treatment allocation is often not random
 - Leads to confounding situations
 - Cannot infer causation
Do TBI patients receiving a particular service (ex. OT, vocational services) have better outcomes?

- Service: 20%
- No Service: 40%
Study Design – Case-Control

- Case-control Study
 - Similar to cohort studies, but identify outcomes of interest and then assess the exposure status of each group.

```
<table>
<thead>
<tr>
<th>Depression</th>
<th>No Depression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meditation</td>
<td>No Meditation</td>
</tr>
<tr>
<td>Meditation</td>
<td>No Meditation</td>
</tr>
</tbody>
</table>
```
Study Design – Case-Control

- Case-control characteristics
 - **Cannot** be used to estimate prevalence or incidence
 - Can use matched controls to eliminate the effect of confounding
 - Higher level of scientific evidence
Study Design - Prospective Studies

• Cohort; Clinical Trial

• Generally expensive in terms of:
 – Time comment
 – Required Resources
 – Administrative duties (consent, patient follow-up)
Study Design - Prospective Cohort

- Prospective Cohort
 - Follow a group of people over time
 - Ex: TBI Model Systems; TRACK-TBI
 - Data specific issues
 - Patient Dropout
 - Recall Bias
Study Design-Clinical Trials

• Highest level of evidence; highest level of resources required
 – Can imply causation
 – Defining a sufficient control group is important
 • Ex: Placebo; Standard of Care; Wait-list control

• Very interesting advances in clinical trial design
Obtain Data

• Advice:
 – Work with informaticists to obtain data without manual record review
 – Do NOT use MS Excel for data entry
 • REDCap, SurveyMonkey
 – Set a protocol for procedures
Analyze Data, Disseminate Results

• Analyzed Data
 – Work with biostatisticians

• Disseminate Results
 – Even if nothing interesting discovered, an absence of a difference may be meaningful
 • ‘Negative studies’
 • https://www.penelope.ai/equatorwizard/
Process of Clinical Research

• Define Research Question
• Assess Resources
• Design Study
• Obtain Data
• Analyze Data
• Disseminate Results
Conclusion

Research is fun!!!!!

• Adam Sima, PhD
 – adam.sima@vcuhealth.org

• Biostatistician at VCU
 – Primary Duty: Assist researchers develop research programs
 • Study planning
 • Data analysis

• Slides located at: http://www.biostatistics.vcu.edu/bclresources/